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Computationally efficient transformations (control variates) are developed and used in 
conjunction with importance sampling to reduce the variance of the Monte Carlo estimate of 
the variational energy, (I@‘~)/(~~), thereby providing tighter confidence intervals for the 
estimate. The transformations are applied to calculating the ground state energy of He using 
an explicitly correlated wavefunction; we report an effective method of importance sampling 
in Hylleraas coordinates as well. For our largest sample (N = 6O,OOO), relative to importance 
sampling only, introduction of control variates reduces the variance of the energy estimate by 
92%. This dramatic reduction in the variance was obtained with a cost factor of only 1.07 in 
CPU time on a Burroughs 6700 computer. In practical terms, the cost of these calculations is 
in generating the random numbers for the importance sampling and inverting the probability 
density functions; in comparison, the additional cost of control variates is slight. 

I. INTRODUCTION 

The motivation for the work reported in this paper arises from our interest in 
explicitly correlated wavefunctions [ 11, that is, wavefunctions which involve 
expansions in terms of the interelectronic coordinates, rii. These wavefunctions give 
rise to very complicated integrals; even their normalization integrals are not trivial to 
evaluate. Monte Carlo techniques for integration [2-4] provide one way of over- 
coming these difficulties, and indeed, currently there is considerable interest in 
applying the method to quantum chemical problems [j-13]. However, the Monte 
Carlo method converges slowly and has a large variance associated with it. The 
objective of this paper is to develop and apply computationally efficient transfor- 
mations (control variates) to reduce this variance and to provide tighter confidence 
intervals for Monte Carlo estimates. 

The quantity of interest is the energy expectation value, (E). In Section II we 
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discuss the error in the Monte Carlo estimate of (E) when a quotient of means is 
employed, and in Section III we report a new, efficient variance reduction technique 
which employes control variates in order to reduce this error. It is, however, common 
to estimate (E) by a single mean as in the Metropolis method [14, 151, and more 
current methods (e.g., [6, 71) estimate the exact energy itself by a single mean. In 
Section IV we discuss control variates for this case and explain why, for technical 
reasons, we do not employ them in this paper. Finally, there is a concrete example in 
Section V: the ground state of helium using an explicitly correlated wavefunction. 
Therein we present equations for efficient importance sampling in Hylleraas coor- 
dinates, and we also report and discuss the variance reductions which arise upon 
using a variety of control variates together with the CPU time penalties incurred. 

II. RATIO ESTIMATOR AND ITS VARIANCE 

The variational energy (E) is a quotient of two expectation values 

where 

and 

S-lpi/l (3) 

The Monte Carlo estimate of the quotient (using importance sampling [2-4]) is 
given by 

(4) 

where 

and R(i) E (r(i) i ,..., c$‘) is the ith member of a set of n points in the configuration 
space of N electrons. In (5) and (6), 9 is the Jacobian of transformation from 
Cartesian coordinates; the densities pH and ps are arbitrary, normalized, positive 
probability distributions chosen to mimic H and S, respectively. Hence a nearly 
constant value is obtained for E? and s”, and thus a reduced variance for each sum is 
also obtained. 

The quotient (4) converges to (E) as n + co ; it has a negligible bias for large n 
[ 161, and the limiting distribution of (4) is asymptotically normal, subject to mild 
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conditions on the distributions of I? and 3 [ 171. Thus the variance of (4) 
asymptotically provides a confidence interval for (E); e.g., 

Prob(J(E) -8,,] < 3 Var”*(g,,)) z 0.997 (7) 

The problem of estimating the variance of ratio estimators is still an area of active 
research (e.g., [ 18]), but for our purposes, the classical estimate [ 16) should suffice: 

5&&& Fz (n(n - 1)(s)*)-’ p E7* - 2&c (=q + El, c g*) (8) 
For large n, one replaces the unknown (5’) by its Monte Carlo estimate, s, the 
denominator of (4). With this modification, (8) is equivalent to Coldwell [ 13, 
Eq. (12)j or, in terms of the variances of E? and s” [ 161: 

5&?,,) z (I&) -1 (G(H) - 24&&H, 3) + &52(S), (9) 

III. CONTROL VARIATES 

Consider the Monte Carlo estimate of an integral, say, (g) 

where g’= g/pg, and pg is an arbitrary, normalized and everywhere positive density 
distribution function of R [ (i) 2-41 Let c’ be a function of R with known expectation . 
value (c?, and define for each point in configuration space 

g= = ‘g + P(E- (c”)), (11) 

where p is a constant. It follows that z= z, and as p is arbitrary, we can pick 
0 = j?*, the value which minimizes Var(g’). It is easy to show that [ 191 

and for this choice of p, 

p* = - Cov( g, ?)/Var(f?), (12) 

Var(T) = (1 - &) Var( 3, (13) 

where ptz is the correlation coefficient for g” and 15. As /pgtj < 1, a reduction in 
variance is obtained by using gT rather than g” and hence improved confidence 
intervals for (g), estimated by the average value of gT. From (13) it is apparent that 
as the correlation between c’ and g increases, the variance reduction is enhanced. 

The function E is a control variate for & several references to applications for 
variance reduction are cited in [ 201. Also of importance is Rosenberg’s paper [ 2 1 ] on 

m/41/3-4 
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multidimensional Monte Carlo integration using both importance sampling and 
control variates. 

Extension of the concept of control variates to the problem at hand, reducing the 
variance of a quotient of means (4), is not obvious. The naive approach, to control 
both fi (5) and S (6) 

HTCIJ,) = 23 + P,(& - (C”)) (14) 

ST@,) = s” + /3& - (Q) (15) 

with p’s given by expressions analogous to (12), is not satisfactory. The equation 
which results for Var(#,,) is too complex unless cH cc c,, and in this case the 
variance reduction obtained is equal to that using (14) alone, with /3jj chosen to 
minimize Var@,,). cB,* is given by [27, Eq. (2.8)].) This, of course, is clear upon 
inspection of (9); to minimize the variance we should control for the covariance of ti 
and S. 

Iglehart and Lewis [22] also addressed the problem of reducing the variance of a 
ratio estimator. They concluded that only one control variate seems practical, but 
also, to.be effective, the control must be highly correlated with the difference between 
the numerator and the denominator. However, we have derived expressions which 
enable us to use multiple controls effectively. 

Consider the function 

D = HT(&) - I?,, ST(&), (16) 

where HT and ST are given by (14land (15), respectively, and 8,, by (4). It is 
readily apparent that p = i?, ??r = s, and the value of ,!?Lc, 

'T E MCzn 
--l i$, HT(R"';P,)Inl i ST(@);/&), 

i=l 
(17) 

equals that of gMC. Further, as we show in Appendix I, 

Var(D) = n($)’ Var(&). (18) 

Now, if we choose p, to minimize Var(@ 

/3,* = - Cov(@, cH)/Var(c,), (19) 

we are free, for the chosen j3t value, to choose /Is to minimize Var(D), and hence 
from (18), Var(g&). We show in Appendix II that the optimum choice is given by 

pf = [Cov(E?, es) + & Cov(c,, es) - iMC Cov(S, cs)]/(&,c Var(cJ). (20) 

Equations (14), (15), (19), and (20) define transformations for both the numerator 
and the denominator variables which reduce the variance of the simulated quotient of 
means of these variables. 
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IV. REMARKS ON THE METROPOLIS METHOD 

Expressing the variational energy as 

(E) = j E(r, ,..., r,J I=,&, , . . . . rN) dr, (21) 

where 

E = ~v/w, (22) 

the Monte Carlo estimate of (E) is a single mean. Accordingly, the transformation 
analogous to (11) and (12) will reduce the variance of this estimate. 

The Metropolis method is the commonly used method of sampling from PN, thus 
avoiding the need for a normalized wavefunction. There are, however, important 
technical considerations with the Metropolis method ([5] and references cited 
therein), and these are shared, in part, by more recent methods (e.g., [6, 71). We are 
concerned especially by the need to remove statistical correlation in the Monte Carlo 
sample which confounds any analysis of the effectiveness of the variance reduction 
based upon numerical results. 

In applications we will focus upon the reduction of variance for a quotient of 
means, and the methods we propose easily avoid statistical correlation in the Monte 
Carlo sample. 

V. APPLICATIONS 

Many trial wavefunctions, for which the variational energies are known [ 11, have 
been constructed to describe the ground state of atomic helium. We have selected an 
explicitly correlated Hylleraas He wavefunction as a test case for the application of 
the variance reduction transformations described above: 

where 

w = (1 + 6t * + yu) exp(-Ps), (23) 

s=r, +r2, t=rl-r2, u = r,2. (24) 

In (24), ri is the distance of the ith electron from the nucleus, rti is the interelectronic 
distance, and 

After integrating over the Euler angles 

dz = 2x2 u(s2 - t2) ds dt du, (26) 
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and allowing that the Hamiltonian is a even function of 1, expressions for (Q&Q) and 
(WV) are those given in Bethe and Salpeter [23, Eq. (32.8)]. 

It is readily apparent that we must generate a set of three random numbers 
corresponding to values of s, t, and u for each of the terms of the Monte Carlo sums 
that estimate (@Q) and (WV). Given that the computer-generated pseudo-random 
numbers will be drawn from a standard univariate uniform distribution, we first must 
convert these to ones that are drawn from densities pH and ps used in the importance 
sampling. The technique used is like that described by Sasaki [24]. 

Given an r-dimensional probability density p(xr ,..., xr), define reduced density 
functions 

&(X1, . . . . xJ- 
f f 

*a* /(Xl)...) Xr)dXk+l -**dx,, k = l,..., r - 1, (27) 

and define the conditional density functions 

Pk+I(Xk+ L 1 x1,*-~ xk) =Pk+l(X~,.*., Xk+&k(XW., xk). (28) 

Now since 

r-1 
Pl(xl) n p(xi+l IXl,“‘,Xi)=P(X1,...,Xr), 

i=l 
(29) 

r-dimensional random numbers can be generated by first selecting x, from pr(x,) and 
then selecting successively xi, i = 2 ,..., r from P(x, 1 x, ,..., xi- I). 

In our case, it is possible to derive analytic expressions for pi(x,) and P(Xi / 

Xl r***, +,). Choose the density obtained from an ST0 

p&, t, 24) = Nu(s* - t’) exp(-2as), (30) 

where a is a constant and N is the normalization constant 

(31) 

In order to select a set of random numbers from p, (30), the following procedure is 
carried out: 

(i) Choose three random numbers p,, pI,, and pu, from a standard uniform 
probability density; these represent the probabilities of finding the two electrons at 
the point in configuration space with coordinates sO, fO, and u,, respectively. 

(ii) Integrate p, (30) over t and ZJ in order to obtain pi(s) and compute s0 such 
that 

(32) 
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(iii) Set s = s, in (30) and integrate over t to obtain P, (u 1 so). Now compute 
u,, such that 

(iv) Set s = s, and u = u,, in (30) to obtain P3(t ) sO, u,,). Compute t = to such 
that 

to Pt, = i dtP,(t I so, uo>, O~to~uo. (34) 
0 

It is numerically straightforward to solve for so, to, and no in (32)-(34), given pa 
(30). We can express pi(s) as a X*-function, allowing so to be computed from an 
inverse $-function using IMSL [25] subroutine MDCHI. Probabilities P,(u 1 so) and 
P3(tls0, no) give rise to polynomial expressions in no and to, respectively; the largest 
positive root of each of Eqs. (33) and (34) is used, solved for approximately by 
Newton’s method. 

Given a set of (so, to, uo), one term in each of the sums in (4) is calculated; the 
density p, (30) is used for both pH (5) and ps (6). This same set of random numbers 
is also used to calculate c, (35) and cs(36) or (37). 

where 

w, = exp(--as), (38) 

#o = exp(-b(s* + t’)). (39) 

Controls c,, and es correlate highly with 2 and 9, respectively. Note that w* is an 
ST0 with orbital parameter a, and that #o is a GTO with orbital parameter p. The 
means, variances, and covariances necessary to compute /3,* (19), /3: (20), HT@) 
(14), S’@$) (15), and hence s;, (17), are calculated cumulatively using an efficient 
moments routine [ 261. 

Table I reports the Monte Carlo estimates of the variational energy and the 
variances of these estimates for various sample sizes and control variates; included is 
the variance where importance sampling has been used but no controls have been 
applied. We wish to demonstrate that using multiple controls (controlling both Z? and 
9) is more effective than controlling either fi or # separately. 

Control variates for the denominator, f?,, use either an ST0 (38) or a GTO (39); 
the former gives consistently more variance reduction, as expected, since it more 
closely approximates the trial wavefunction (23). 
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When controls are applied only to ,‘?, /3f is chosen to minimize Var(&,). When 
controls are applied only to I?, the results using /3,$ chosen to minimize Var(i?) are 
compared against those using /3,* chosen to minimize Var(E,c); these are 
comparable. It is evident that Var(l?) plays a greater role in Var@,c) than does 
Var(S”). This conclusion is supported by comparing the variance reduction resulting 
from controlling fi versus $. This justifies our approach of first specifying &$ to 
minimize Var(H) and then finding /If (20) to minimize Var(D) for the chosen /I,* 
value. 

For our largest sample (N = 60,000), relative to importance sampling only, 
introduction of ST0 control variates for both B and 3 ((35) and (36), respectively) 
reduces the variance of the energy estimate by 92%; this corresponds to a 72% 
reduction in the standard deviation. Indeed, the variance for the largest uncontrolled 
sample (N = 60,000) even exceeds that of the smallest (N = 5,000) controlled sample. 

The 92% reduction in the variance over that for importance sampling solely was 
obtained with a cost factor of only 1.07 in CPU time on a Burroughs 6700 computer 
for the N = 60,000 sample. In practical terms, the cost of these calculations is in 
generating the random numbers for the importance sampling and in inverting the 
probability density functions; in comparison, the additional cost of control variates 
was slight. 

Work is now in progress to extend these techniques to more complex systems, in 
particular, to the problem of He,. While the sampling used to obtain points in 
configuration space described in the Applications section appears intractable in 
Hylleraas coordinates, it is not so in prolate spheroidal coordinates. As a guiding 
function, the Hartree Fock wavefunction should be of sufficient complexity for 
sampling purposes. 

APPENDIX I: DERIVATION OF EQ. (18) 

Given the function D of Eq. (16), we wish to show that the variance of D is given 
by (18). By definition, 

Var(D) = (D’) - (D)2. (‘41) 

Substituting (16) into (Al), 

Var(D) = ((HT)2) - 2,J?,c(HTST) + 8L,((S’)‘) - ((H’) - ,??,,(S’))‘. (A2) 

Upon expanding (A2) and rearranging terms, 

Var(D) = Var(HT) - &MC Cov(HT, ST) + &,c Var(ST). 643) 

Now since 
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comparison of (A3) with (9) leads to (18), the desired result, given that 

J& =I??;,. 

APPENDIX II: DERIVATION OF EQ. (20) 

Given the function D of Eq. (16), we wish to solve for /If which minimizes Var(D) 
given a chosen /I,*. 

Substituting (14) and (15) for HT and ST, respectively, the variance of D becomes, 
upon setting /3, = /I,* 

where 

Now, 

Similarly, 

where, 

Var(D) = Var(a - b), (Bl) 

a E E7 + p;<& - (C,)) - &S, 032) 

b E &,/3,(~, - (Q). (B3) 

Var(a - b) = Var(u) + Var(b) - 2 Cov(a, b). 034) 

Var(u) = Var(c) + Var(d) + 2 Cov(c, d), W 

C&L&& P36) 

d = p;<& - (Q). (B7) 

It can be easily shown that 

Var(c) = Var(il) - 2lZ,, Cov(ii, g) + I$, Vat@) 

Var(d) = /I.$’ Var(c,) 

Cov(c, d) = p,* Cov(l?, C,) - l&p,* Cov(S, es> 

Therefore, using (B8)-(BlO) in (B5), 

Var(u) = Var(@ - 2BMC Cov(l?, S) + l?Lc Var(S) 

+ j?,* Var(c,) + 2&j Cov(H, cH) - 2&&H* Cov(R es). 

Now, 

Var(b) = I?~& Var(c,) 

W) 

(B9) 

@ 10) 

0311) 

U3 12) 
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and 

Cov(u, b) = fMc&[Cov(I% es) +/I; Cov(&, es) - gMC Cov($ es)]. (B 13) 

Finally, substituting (B 1 I)-(B13) into (Bl) and (B4), we obtain 

Var(D) = Var(A) - 2ZMC Cov(E?, S) + l?Lc Var(S) +/I,*’ Var(c’,) 

+ 2jI$ Cov(i& C*) 

+ &c/I3 Var(cS) - ti,,/3,(Cov(fi, es) + & Cov(CH, c’,)) 

+ 2&p, Cov(#, C,) - 2J?Q3jYj Cov(s”, &). (B14) 

In order to choose a value for /I, which minimizes Var(D), we differentiate (B14) 
with respect to ps, set the resulting expression to zero, and solve for Pf 

/I: = [Cov(E?, ES) +@Cov(cH, c,J -8,c Cov(& c,)]/(&,, Var(cs)). (B15) 

This expression is (20) in the text. 
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